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The process of the formation of a stationary mass transfer mode for a moving 

reacting particle is examined. An analytic expression valid for a nonstationary 
distribution of the concentration of matter in a steady stream of viscous fluid, 

flowing past a spherical particle, was obtained for the case when at a certain in- 

stant a chemical reaction of the first order begins at the surface of the sphere. 
The problem is solved for small finite Reynolds and PCclet numbers. The solu- 

tion of the corresponding stationary problem has been obtained in [ 11. Paper [Z] 
examined a nonstationary heat transfer of a fluid spherical drop in an inviscid 
flow with spasmodic change of initial temperature at high P&let numbers. Paper 

[3] contains an analysis of the problem of a nonstationary heat transfer of a rigid 
spherical particle for small Reynolds and P&let numbers at spasmodic change of 
temperature of the particle surface. The results obtained in [S] can be used to 

describe the mass transfer for a moving reacting particle only in the case of a 
diffusion mode of the chemical reaction. 

1. Statement of the problem. A diffusion process is considered for the case 
of animpenetrable spherical particle, the radius of which is a and around which a sta- 

tionary stream of a viscous incompressible fluid flows. At large distances from the par- 
ticle the velocity of the oncoming stream and the concentration of the diffusing mater- 

ial are constant and equal I:, c0 , respectively. It is assumed that at an initial instant 

a chemical reaction of the first order begins at the surface of the particle (e. g. due the 

particle being warmed up to a certain critical temperature). We choose the spherical 
system of coordinates r , 0, where the coordinate r is taken with respect to the center 
of the particle and the angle t) to the direction of the flow velocity at infinity. We re - 
present the equation and the boundary conditions in the form 

z = 0, r>l, t =o (1.2) 

r>O, r = 1, i,E 
- = ik(E -- I), OI k = k,a/D 0.3) 

r-> Y, 5 --> 0 (I. 4) 

Here L’, , p. are the velocity components, D is the diffusion coefficient, /I:.+ is the rate 
of the chemical reaction, the prime denotes dimensional values. We note that the rela- 
tions (l.l)-(1.4) describe also the process of the heat transfer and for k -= 00 correspond 
to the mode for which the surface temperature is maintained constant. In the problem of 
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the heat transfer it is assumed 

E= 
T - To 
_’ 

mass transfer 

p,Ua 
x 
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where T,, is the temperature of the onflowing stream, T, is the surface temperatureand 

X is the coefficient of the thermal diffusivity of the medium. The problem is solved for 

small finite P&let and Reynolds numbers. The velocity distribution in the stream is con- 
sidered to be specified by the expressions obtained in [4]. Introducing the Schmidt num- 
ber 8 = P / R we write for the stream function the expressions [4] in the following 

form : 
for the inner region 

q =~*=+(r-l)yl-p)[(l+&P+ 

&P’lnP)(z+f) -&P p++++] 

and for the outer region 

$=$ I#* = f p2 (1 - p”) - + SP (1 + p) x 

[l-exp(--gy-)] p=cose, p = rP 

Terms of the order P2 are not taken into account. The Schmidt number is assumed to 
be large or equal 0 (1) (the case of S < 1 is of small practical interest) and in the 

solution of the problem is considered constant. 

2. Method of solution, We introduce the Laplace transformation for the con- 
centration to be found 

5 = i e-PsrE(r, p, z)dz 

0 

As g is limited for T -+ co, then j is analytic for Re s > 0. Taking into account 

(1.2) the equation obtained from (1.1) for 5 in the inner region has the form 

and in the outer region 

(2.2) 

Here A* is the Laplace operator in the variables p, p. The boundary conditions (1.3) 
(1.4) yield 

r =: 1, CY 3* = kc, - + 
ar 

(2.3) 

P’-J, c* 3 0 (2.4) 

The problem is solved by the method of matched asymptotic expansions with resepct to 
the PCclet number. The particular features of the method were examined in [4]. We have 
to determine 5 in the form oo 

f-* = 2 a,(P) En (r, p) in the inner region (2.5) 
Tl=O 

c* = 5 a@)(P) zp’(p, p) in the outer region (2.6) 
FL=ll 
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Moreover, it is required that 

%+1 fP) _, () 

a,(p) ’ 
.(n+l)(p) _ 0, 

CP) (P) 
p_ 0 

3, Conrttuction of the Bolution, Zero order approximations, 
The zero order approximation of the auter expansion has the form c(O) (p, p) == 9. For 

the inner expansion we obtain the Laplace equation AC, = 0, and we assume a0 (P)= 
‘l / P. For such a choice of “1, the solntion a, &,, which satisfies the condition (2.3)) 

represents a Laplace form of zero approximation quoted in 

First approximations. It follows from (3.1) that 

for c(t) (p, cl) has the form 

a(r) (P) = 1. The equation 

(A - s) ?p = 0, 
1-p 3 

i\=A*-p+TF (3.2) 

The solution of Eq. (3.2) vanishing at infinity, is 

Here K,+,* (%) is Ma~o~ald function, P, (p-) is the Legendre polynomial; that 
branch of the fusion vmi which on the real half-axis 0 2< s < 0~1 yields the 
arithmetic value of the root, is always taken. The coefficients A, are determined from 

the matching conditions with (3.1). Finally we have 

(3.3) 

It follows that a, (P) = 1 and the equation for c1 has the form 

A,=-+(I-&+++ 
The solution of this equation satisfying the boundary condition following from (2.3) and 

the matching condition with (3.3) 

Second approximations. In the second approximation a@) (a) = p.We have 

the equation 

(A - s)P = exp -$?- 1: (p, p) ( ) 
(3.5) 

39s - -- 
4 sp” (r’ 

1f4sf$- p.) exp (--VW) 

The solution vanishing at infinity is 
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U2) (P, cl) = w- (3.6) 

Here the functions J& (p) represent the coefficients of expansion of Q-lP”‘xL (P) in 

Legendre polynomials. 

After cumbersome calculations we obtain the matching of c*(s) (p, P) with &r (r, CL) 

5’“‘(p, p) = Q 
2SP 

(qT/1+4s-_%)-_lnp+$Z(s,q,S)+ (3.7) 

Q 
4s (4V1:+++)p-&(~+&)~+~(P~nP) 

2 (s, q, 8) = - 
I$49 s2+ 94s s+$-T q-+- 

+(I 44s) + $(S1/~+l)2(S-1/l +4s-2) x 

Inlf 1 
( sJfi+4s > 

As is evident from (3.7), for the second approximation of the inner expansion u2 (p) = 
P ln P. For 5, we have the laplace equation, the solution of which satisfies the condi- 
tion (2.3) and the matching condition with (3.7) 

52=$3-q (3.3) 

Third approximation. Due to the appearance of a logarithmic singularity in 
the second approximation of the outer expansion, the third approximation of the inner 
expansion is also determined by the matching with c(s). We have a3 (P) = P, and 
after all the calculations we obtain 

53 = + i &n(r)+ a,r” + 6~--+1] P, (p)+ 
?I=0 (3.9) 

r- 

&+4 2 “l;Ityl (l_&&)p 

a0 = 2 (s, q, q, 6 = - VI +4s 
4 , a,=o, n>2 

k-l s b. = - 0 (89 4, S)- g- - & & + 4 (k + l);k + 2) - - - k+l 2 

b,ti .&$A-3 
[ 

1 
3 (k + 1) (k + 2) If 1+4,+&(1+&) 

b2 = g 
-& (I+%&) +h& +&(k+$k+,) 

6, = 0, n>3 
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Finally we obtain the third approximation of the outer expansion. If follows from (3.8) 
and (3.9) that ~(3) (P) = P2 In P, therefore the equation for 5(s) agrees with (3.2). 

After the matching we obtain 

4, Concentration field. Flux of matter on the partlcle surfnce. 
To determine the concentration field near the particle we find the original of the func- 
tion 

L. = f L f 51 + P In P 52 -I- -KS 

using the results obtained in Sect. 3. Following the usual method, we obtain for the reg- 

ion z- 1 and r >> 1 the concentration field in the form 

E* (r, pL, z> = P2q PO (r) + & (r) P + Aa (r) w + (4. I) 

Here 

Ao(r)=~-‘~+~~_~-~_~_4._ 

$ln(,,S1)](1-~)+{~+~[1~~~7 + 
q (3149 - 553) 

11 ++ 
23-169 1 1 
4(2-q) F+ 213 

3(3-29) 1 1 
46 

-_ 
8(2-q) yl+ - lOr5 

b(r)=-&+&-(-$i-&-)++ 

3-29 
- -j$+&)$-(&+&)f 2-9 ( 

175- IlOq 
16(2-q) + 

-+- 73 + 79k 84 -+ 15k - + 278 1849 + k (49 - _ -- 1 

k+3, 56 80s 16 (2 - 9) 38q) 1 
r3 

4(k-I) +3q(k t3) 1 4 
16 (k + 2) r2 l&3 Lt I 



Nonstationary mass transfer 993 

lfpz 
g(t) =--+&exp (-$T) + erf- 

s 2’ 

erf (5) I= 2 i exp (- u”) du, Ei (5) = 
%I 

5 +u 
-02 

The calculation of the total flux of matter on the surface of the particle, using (4.1). 
gives the following relationship for the Nusselt number 

N(5)=2q;tPq2g(2)+qzP21nP+q2PZ[+-g+r- (4.2) 

236q - 527 

MJ (2 - !7) 
+ In (1 + S-l) - G g(z) --G (T)] 

Thus the passage to the stationary mode is defined by a composite time function. In the 

region ‘G -+ co the formulas (4.1) and 

(4.2) yield the results obtained for the 

stationary mode in IJ]. In the particular 

case of an infinitely large reaction rate 

Fig. I 

(q = 1) they become the relationships obtained in [3]. 

In Fig. 1 the graphs of the function N (a) are given for various values of the P&let 
number and various reaction rates. We see that the speed of approach to the stationary 
mode increases almost inversely proportionally to the P&let number. The mass trans- 
fer process becomes practically the stationary mode for ‘G > 2 / P, i.e. t > 20 / lJ2, 
establishing that the results from [l] are applicable. 
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The plane model proposed by N. N. Verigin for a stabilized fresh water lens pro- 
duced by uniform infiltration is investigated in hydrodynamic formulation in the 

case of equidistant horizontal slit drains, Formulas are obtained for the separa- 
tion boundary, the depression curve, and characteristic dimesions of the lens. * 

1, Statement of problem, The considered pattern of flow is shown in Fig. 1, 

An infinite system of parallel slit drains of the same width 2h normal to the ~:y -plane 
is disposed along the x -axis (the y-axis is directed vertically upward). We assume that 

CY the soil is homogeneous and of unbounded 
depth,and the distance between the middle of 

A 

: 

adjacent drains is instant and equal 2L. Fresh 

a* jY 
water of density p1 seeps from the surface of 

t 6-h 
- --._. 

G 
t 

* the soil over the free boundary (the depression 

R curve AB), passes through the lens (region 

i I 4 H 
E , 

tLYYZYL _:k;~ 

G) , and is drawn off through the drains. Salt 
ground water of density pz lies below the sepa- 

ration boundary (curve EF) . The ease of in- 

Fig. 1 complete flooding of drains is considered and 
it is assumed that infiltration intensity E. (per 

unit length of the z -axis) is oonstant, the ground water is stationary [I, 21, and the mo- 

tion in the lens is stationary. 
Investigation of the described modef which is periodic with respect to :r of period z& 

and symmetric about the y-axis reduces to the solution of the following mathemati~l 

problem (11. We have to construct region G of the form shown in Fig. 1 with a pair of 
harmonically conjugate functions ‘f and @ inside it, so as to satisfy the boundary condi- 

tions 


